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LElTER TO THE EDITOR 

A renormalisation group approach to the scaling structure of 
diff usion-limited aggregation 

Takashi Nagatani 
College of Engineering, Shizuoka University, Hamamatsu 432, Japan 

Received 24 December 1986 

Abstract. A renormalisation group method is presented to analyse the scaling structure of 
the growth probability in diffusion-limited aggregation. The recursion relation for the 
growth probability is derived under the renormalisation transformation. The growth proba- 
bility assigned to each growth bond is represented by a random multiplicative process. 
The scaling of the highest growth probability is derived and the fractal dimension is found. 
A hierarchy of generalised dimensions D ( 9 )  is calculated to describe the growth probability. 
The partition of ( q  - l ) D ( q )  into a density of singularities f ( q )  with singularity strength 
a ( 9 )  is made and the a -f spectrums are found. 

Recently, considerable attention has been focused on the problem of geometrical 
structure in aggregation and growth models (Family and Landau 1986, Pynn and 
Skjeltorp 1985, Pietronero and Tosatti 1986, Stanley and Ostrowsky 1986). There are 
a number of different types of growth process ranging from diffusion-limited aggrega- 
tion (Witten and Sander 1981) to the clustering of clusters (Meakin 1983a, Kolb et a1 
1983). The structure of the aggregates strongly depends on the dynamics of the growth 
process. It is well known that they have a strong measure of self-similarity, which is 
characterised by the fractal dimension D (Mandelbrot 1982). Several analytical 
attempts, including mean-field theories (Muthukumar 1983, Tokuyama and Kawasaki 
1984) and position space renormalisation group methods (Gould et a1 1983), have 
been made to derive the fractal dimension. It is clear, however, that an aggregate 
cannot be fully characterised by its fractal dimensionality. Diff usion-limited aggrega- 
tion ( DLA) and percolating clusters have the same fractal dimension in three dimensions, 
yet they have completely different structures. The essential properties of kinetic 
aggregation processes are fully described by the growth probability distribution for 
perimeter bonds (or sites) of these aggregating clusters (Halsey et a1 1986, Amitrano 
et a1 1986). Halsey et a1 and Amitrano et a1 show that a hierarchy of generalised 
dimensions should be used to characterise the growth probability. 

In this letter, we present a renormalisation group method for the scaling structure 
of the growth probability in diffusion-limited aggregation. We derive the recursion 
relation for the growth probability under a renormalisation transformation. At the 
fixed point the growth probability is represented by a random multiplicative process. 
We find the set of generalised dimensions D ( q )  for the growth probability. The fractal 
dimension is also found from the scaling of the highest growth probability. 

Let us consider a renormalisation procedure for DLA. Cover all the space of the 
square lattice by cells of edge b( = 2), each containing 2b2 bonds; an example for b = 2 
is shown in figure 2(a) .  After a renormalisation transformation these cells play the 
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role of ‘renormalised’ bonds. We distinguish between three types of bonds on the 
lattice: ( a )  break bonds which construct the aggregate, ( b )  growth bonds which are 
on the perimeter of the aggregate and can be successively grown, and (c )  unbroken 
bonds which surround the aggregate, except for the growth bonds. If the cell can be 
connected vertically to the break bonds then the renormalised vertical bond is con- 
sidered to be broken (figure l ( a ) ) .  If the cell cannot be connected vertically to the 
break bonds and contains the break bonds, then the cell is vertically renormalised with 
the growth bond (figure l ( b ) ) .  When the cell is constructed by unbroken bonds only, 
the cell is replaced with the renormalised unbroken bond (figure l(c)) .  If one considers 
whether or not the cell is horizontally connected, then we see that the cell is horizontally 
renormalised. Part of the surface layer of the aggregates is shown in figure 2 .  After 
renormalisation, the lattice on the left-hand side is transformed to the renormalised 
lattice on the right-hand side. We note that if a renormalised unbroken bond is nearest 
neighbour with the renormalised break bond, then it is transformed to the renormalised 
growth bond. The cells are renormalised as the growth bonds, which are nearest 
neighbours to the cell with spanning clusters and are not spanned with break bonds. 

In DLA the growth probability P, at the growth bond i is given by P, - E ,  where 
Ei is the local electric field at the growth bond. Consider the electrostatic problem for 
cells which can be renormalised as the growth bond. The electric fields on the growth 
bonds within the cell are determined by the conductance of the cell. For example, in 
the configuration labelled by (11) (see figure 3), the electric fields Ell , l ,  Ell,* and 
of growth bonds 1, 2 and 3 are given by 

Ell,1= E11,2 = 1 / ( 1 + 2 c n , )  Ell,, = 1 (1) 

where the unit voltage is vertically applied and un indicates the conductance of the 
growth bond at the nth renormalisation. At the ( n  + 1)th stage the conductance ull,n+l 
of the cell with configuration ( 1  1) is renormalised as follows: 

u l l , n + l =  a n  + 1/ (1+0.5 /~ , ) .  (2) 
The growth probabilities pl l , l ,  pl l ,2  and ~ 1 1 . 3  of growth bonds within the cell ( 1 1 )  are 
given by 

Figure 1. Illustration of the renormalisation of a b = 2 cell for DLA on the square lattice. 
The renormalisation procedure in the vertical direction is shown. There are three types of 
bond: break bonds indicated by bold lines, growth bonds indicated by wavy lines and 
broken bonds indicated by light lines. Examples of the distinct configurations are shown 
in ( a ) ,  ( b )  and ( c ) ,  which are renormalised as break, growth and unbroken bonds, 
respectively. The broken lines represent bonds irrelevant to the renormalisation in the 
vertical direction. 
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( a 1  ( b l  

Figure 2. An example of the renormalisation of a part of the surface layer of an aggregate. 
The lattice on the left-hand side is renormalised to that on the right-hand side, according 
to the rules of renormalisation. 
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Figure 3. All configurations of the cell that it is possible to renormalise as the growth bond. 
Configurations (11) or (12) are obtained by adding a break bond onto the growth bonds 
1 or 2 in configuration (0). Furthermore, by adding a break bond to configuration ( l l ) ,  
configurations (21) or (22) occur. 

P11.1 =p11,2 = E, l , l / (1+2~l l , l )  P I l . 3  = 1/(1+2Ell,l)* (3) 
In general, the conductance (+u,n+l of the cell with a particular configuration a is given 
by 

( + U , f l + l  = f a ( u n ) .  (4) 
One can enumerate all configurations of the cell. The ( n  + 1)th renormalised conduct- 
ance will be assumed to be given by the configurational average 

where the Cu(un) represents the probability of a particular configuration a and the 
sum ranges over all the configurations. The relationships (4) and ( 5 )  present the 
renormalisation group u,,+~ = R(u,).  Its fixed point U* is given by 

(+* = R(u*) .  ( 6 )  
At the fixed point, the growth probability on the growth bond i within the cell a is 
represented by a function of U*:  

After renormalisation, the growth probability P i ( L )  on any growth bond i is given by 

(8)  

PX,i = gu,i(u*)* (7)  

Pi( L )  = Pp, ipp  ( L /  6 )  
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where L represents the size of the system, b is the scale factor and pp , i  indicates the 
growth probability of the growth bond i within the cell p. After many repeated 
renormalisations, pp , i  approaches the value pg , i  at the fixed point, given by (7).  The 
recursion relation (8) is not the scaling relation but represents a random multiplicative 
process. The relationship (8) is the most important feature of our approach, characteris- 
ing the scaling structure of DLA. From relation (8) we can construct an infinite hierarchy 
of generalised dimensions D( 4): 

In the limit of L sufficiently large, it is given by 

where the C l  indicates the probability of configuration a at the fixed point and the 
second sum ranges over the growth bonds within the cell a. 

From relation (8) the highest growth probability P,,, scales as 

0 4 1  I I I I I I  
-8 

Figure 4. D ( q )  plotted against q for DLA. 
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Figure 5. The plot o f f  against a for the D ( q )  of figure 4. Note that q = cc corresponds 
to D ( m ) = d , - l  and d , =  1.711.. .. 
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where pa,max represents the highest growth probability in the cell with configuration 
a. If one assumes the scaling Pmax - L1-df (Turkevich and Scher 1985), the fractal 
dimension df is given by 

Let us consider the configurational probability Cu ( a,) with which a particular 
configuration a appears. Figure 3 shows all the configurations of the cell that it is 
possible to renormalise as the growth bond. The distinct configurations are labelled 
by a(a = 0, 11,12,21,22,23) in figure 3. Configurations ( 1 1 )  or (12) are constructed 
by adding a break bond to configuration (0). The probability with which a break bond 
adds onto growth bond 1 or 2 in configuration (0) is given by p0,]  or pOs2. In addition, 
by adding a break bond to configuration ( l l ) ,  configurations (21), (22) or (23) occur. 
The configurational probabilities Ca are given by 

Cl 1 = CoPo.1 c 1 2  = CoP0.2 c 2 1  = COPO,lP11,1 
c 2 2  = ~O(PO,lP11,2fP0,2P12.2)  c23 = cOp0,2P12,1 * (13) 

C C a = l .  (14) 

The configurational probability CO is determined from the normalisation condition: 

U 

In general, the probability that a given growth cluster configuration of n bonds 
occurs is given by the product of growth probabilities of adding a break bond at each 
step. The configurational probability Ca (a,) is determined by the growth probabilities 
pu,i of the cells. Equations (4), (9, (7) and (13) are simultaneously solved. For b = 2 
we obtain 

P& = Pt.2 = 0.5 p ~ l , I = p ~ l , 2 = o . 1 1 0 . .  . pT1,3 = 0.779 . . . 
* PZ*1,1 =p2*1,2 =p11.1 

P?I,I =p21,2=p~2,1 * =pf2,2=p%,1 =p%.2=0.5. 
PT1,3 = PT1.3 

(15 )  
One can obtain the set of generalised dimensions D ( q )  via equation (10). The exponents 
D ( q )  are plotted in figure 4. From (10) and (12) we find the fractal dimension 

(16) 
in good agreement with the off-lattice result (Meakin 1983b). The information 
dimension D(1) is given by D(1) = 0.991 . . .. This value is very close to the exact value 
of the harmonic measure. The scaling exponent D(0)  of the number of growth bonds 
in the surface layer is also given by D(0)  = 1.263 . . .. This value is in poor agreement 
with the result of Amitrano et al (1986). The partition of D ( q )  into a density of 
singularities f(q) into singularity strength a( q )  is introduced: 

d f = D ( a ) +  1 = 1 . 7 1 1 . .  . 

D ( q )  = ( 4  - l ) - ' {qa (q )  - f ( q ) ) .  
We display the relation between a and f in figure 5 .  The a- f  spectrum has a 

convex shape. This curve agrees with the result of Amitrano et a1 for comparatively 
large values of q, but is poor for smaller values of q. This poor result contributes to 
the small-size cell of the renormalisation transformation. 
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In summary, we present the renormalisation group method to derive the set of 
generalised dimension in relation to the cluster structure of surface layers in diffusion- 
limited aggregation. Under RG transformation a recursion relation is derived for the 
growth probability. The growth probability is represented by a random multiplicative 
process. The multifractal spectrum is found for DLA. Our RG approach to the scaling 
structure is general and is not limited to the particular cell considered here. To obtain 
better values, it will be necessary to perform large-cell calculations using a Monte 
Carlo renormalisation method. 
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